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5 Probability Foundations

Constructing the mathematical foundations of probability theory
has proven to be a long-lasting process of trial and error. The
approach consisting of defining probabilities as relative frequencies
in cases of repeatable experiments leads to an unsatisfactory theory.
The frequency view of probability has a long history that goes
back to Aristotle. It was not until 1933 that the great Russian
mathematician A. N. Kolmogorov (1903-1987) laid a satisfactory
mathematical foundation of probability theory. He did this by
taking a number of axioms as his starting point, as had been done
in other fields of mathematics. [21], p 223]

We will try to avoid several technical detaild™][™] in this class.
Therefore, the definition given below is not the “complete” defini-
tion. Some parts are modified or omitted to make the definition
easier to understand.

14To study formal definition of probability, we start with the probability space (9, A, P).
Let  be an arbitrary space or set of points w. Recall (from Definition that, viewed
probabilistically, a subset of ) is an event and an element w of Q2 is a sample point. Each
event is a collection of outcomes which are elements of the sample space ().

The theory of probability focuses on collections of events, called event o-algebras, typ-
ically denoted by A (or F), that contain all the events of interest (regarding the random
experiment &) to us, and are such that we have knowledge of their likelihood of occurrence.
The probability P itself is defined as a number in the range [0, 1] associated with each event
in A.

15The class 2% of all subsets can be too large for us to define probability measures with
consistency, across all member of the class. (There is no problem when  is countable.)

44



Definition 5.1. Kolmogorov’s Axioms for Probability [12]:
A probability measurd!%is a real-valued set function'| that sat-
isfies PL- )

o H‘Al P‘M t— e
P1 Nonnegativtitfy: e

P(A) > 0.

P2 Unit normalization:
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e The number P (A) is called the probability of the event A

S Jokn e The entire sample space €2 is called the sure event or the
v g & .

e 5 certain event.

tnwvolvia

cvents e If an event A satisfies P(A) = 1, we say that A is an almost-
whose sure event.

probobi \i*y e A support of P is any set A for which P (A) = 1.

From the three aXiomsEL we can derive many more properties
Ex. QA= L2% %of probability measure. These properties are useful for calculating
p(A)  brobabilities.

[~ O
(1% ?
i"} ? 6 Technically, probability measure is defined on a o-algebra A of Q. The triple (2, A, P) is
.&'3'& ? called a probability measure space, or simply a probability space
ITA real-valued set function is a function the maps sets to real numbers.
{“; 7-} ? 18Remark: The axioms do not determine probabilities; the probabilities are assigned based
‘L 1 3} 0 on our knowledge of the system under study. (For example, one approach is to base probability
' assignments on the simple concept of equally likely outcomes.) The axioms enable us to easily
q'—z_l 33 7 calculate the probabilities of some events from knowledge of the probabilities of other events.
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5.2. P(@) = 0. .l:a‘;gi‘n.'\' union
shart with Pa:
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5.3. Finite additivity[”} If A, ..., A, are

{
P(AUB) = PLA) rPLB)
Pfoo'{". Stort with J’ :30.“‘“— e

Lu{yzrm |

et A AL cA. = =P '_L:H

Special case when n = 2: Addition rule (Additivity)
If ANB =0, then P(AUB) =P (A)+ P(B). (5)

19Tt is not possible to go backwards and use finite additivity to derive countable additivity
(P3).

46



5.4. The probability of a finite or countable event equals the sum
of the probabilities of the outcomes in the event.

(a) In particular, if A is countable, e.g. A = {aq,as, ...}, then
o Ex. A= 24,133},

P(A) = P({an})- pay = p(1n1) rr (428 +el43))
[1}1}:] =S1kuiz'ﬁu {2% n=1

(b) Similarly, if A is finite, e.g. A = {al, as, ..., a|A‘}, then

3

Al

P(A) =) P({a.}).

e This greatly simplifie§”’| construction of probability measure.

T veduces e & voalues thet we meed to s,cc?b/
wiher w~e CC?“S+’UCj- F>

prnn 2r‘ 'Fa |'a) \ﬂ’h)&l.
Remark: Note again that the set A under consideration here

is finite or countably infinite. You can not apply the properties
above to uncountable set 1]

20 Recall that a probability measure P is a set function that assigns number (probability) to
all set (event) in A. When ) is countable (finite or countably infinite), we may let A = 2 =
the power set of the sample space. In other words, in this situation, it is possible to assign
probability value to all subsets of (2.

To define P, it seems that we need to specify a large number of values. Recall that to
define a function g(z) you usually specify (in words or as a formula) the value of g(z) at all
possible x in the domain of g. The same task must be done here because we have a function
that maps sets in A to real numbers (or, more specifically, the interval [0, 1]). It seems that
we will need to explicitly specify P(A) for each set A in A. Fortunately, implies that we
only need to define P for all the singletons (when  is countable).

2n Section |10, we will start talking about (absolutely) continuous random variables. In
such setting, we have P({a}) = 0 for any «. However, it is possible to have an uncountable
set A with P(A) > 0. This does not contradict the properties that we discussed in IfA
is finite or countably infinite, we can still write

P(A)=> P({a})=)> 0=0.

acA a€cA

For event A that is uncountable, the properties in are not enough to evaluate P(A).
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Examére 5.5. A random experiment can result in one of the out-

comes {a, b, ¢,d} with probabilities 0.1, 0.3, 0.5, and 0.1, respec-
tively. Let A denote the event {a,b}, B the event {b,c,d}, and C

the event {d}. s foledy P(121) =01 P(ic¥)=o05
P({bY) =0-3 P(1d1) = 0.9

p4) = P( {ab}) =p(La1) rr(ib}) = 01403 = 0.4

P

°
i

A9 =p(4edl) =pL[<—})+ P(43%) = 0.5+ b.1=0.L

°
i)

(
(
©)=rpr({dh) =
(
P(

P(AN B) —P(Uo’x) = 0.3
e PIANC)=F(@) =

5.6. Monotonicity: If A C B, then P (A) < P(B)
¢ = B\A

B=Av_C
e(B) =PcA) +P(C) P(8) -PA) 2 0

"~
>0 P(8)Z rth)

B

5

Example 5.7. Let A be the event to roll a 6 and B the event
to roll an even number. Whenever A occurs, B must also occur.
However, B can occur without A occurring if you roll 2 or 4.

5.8. If A C B, then P (B\ A) = P(B) — P (A)
.y P2

v

\
A . O < P(A) ¢ PLO) =
5.9. P(A) € [0,1]. N P
5.10. P(AN B) can not exceed P(A) and P(B). In other words,

“the composition of two events is always less probable than (or at
most equally probable to) each individual event.”

An TA
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Example 5.11 (Slides). Experiments by psychologists Kahneman
and Tversky.

— Example 5.12. Let us consider Mrs. Boudreaux and Mrs. Thi-
bodeaux who are chatting over their fence when the new neighbor
walks by. He is a man in his sixties with shabby clothes and a
distinct smell of cheap whiskey. Mrs.B, who has seen him before,
tells Mrs. T that he is a former Louisiana state senator. Mrs. T
finds this very hard to believe. “Yes,” says Mrs.B, “he is a former
state senator who got into a scandal long ago, had to resign, and
started drinking.” “Oh,” says Mrs. T, “that sounds more likely.”
“No,” says Mrs. B, “I think you mean less likely.”

Strictly speaking, Mrs. B is right. Consider the following two
statements about the shabby man: “He is a former state senator”
and “He is a former state senator who got into a scandal long ago,
had to resign, and started drinking.” It is tempting to think that
the second is more likely because it gives a more exhaustive expla-
nation of the situation at hand. However, this reason is precisely
why it is a less likely statement. Note that whenever somebody
satisfies the second description, he must also satisfy the first but
not vice versa. Thus, the second statement has a lower probability
(from Mrs. Ts subjective point of view; Mrs. B of course knows
who the man is).

This example is a variant of examples presented in the book
Judgment under Uncertainty [11] by Economics Nobel laureate
Daniel Kahneman and co-authors Paul Slovic and Amos Tversky.
They show empirically how people often make similar mistakes
when they are asked to choose the most probable among a set of
statements. It certainly helps to know the rules of probability. A
more discomforting aspect is that the more you explain something
in detail, the more likely you are to be wrong. If you want to be
credible, be vague. [17, p 11-12]
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5.13. Complement Rule: N AVA AlA
P(AY=1-P(A). .

e “The probability that something does not occur can be com-
puted as one minus the probability that it does occur.”

e Named “probability’s Trick Number One” in [10]

5.14. Probability of a union (not necessarily disjoint):

P(AUB) = P(B) + PLANB)
~—

=P(A) - P(ANB)

e P(AUB) < P(A) + P(B).

e Approximation: If P(A) > P(B) then we may approXimrate
P(AU B) by P(A).

Example 5.15 (Slides). Combining error probabilities from vari-
ous sources in DNA testing

Example 5.16. In his bestseller Innumeracy, John Allen Paulos

tells the stor % how he once heard a local Weathergrstaél /claim that

there was a 50% chance of rain on Saturday and a 50% chance of

rain on Sunday and thus a 100% chance of rain during the weekend.

Clearly absurd, but what is the error? P(AUBR) =flA>+P(8) - rlAng)
Answer: Faulty use of the addition rule !
If we let A denote the event that it rains on Saturday and B

the event that it rains on Sunday, in order to use P(AU B) =

P(A)+ P(B), we must first confirm that A and B cannot occur at
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the same time (P(ANB) = 0). More generally, the formula that is
always holds regardless of whether P(AN B) = 0 is given by [5.14}

P(AUB)=P(A)+ P(B)— P(AN B).

The event “A N B” describes the case in which it rains both days.
To get the probability of rain over the weekend, we now add 50%
and 50%, which gives 100%, but we must then subtract the prob-
ability that it rains both days. Whatever this is, it is certainly
more than 0 so we end up with something less than 100%, just like
common sense tells us that we should.

You may wonder what the weatherman would have said if the
chances of rain had been 75% each day. [17, p 12]

5.17. Probability of a union of three events:

P(AUBUC)=P(A)+ P(B)+ P(C)
— P(ANB)—PANC)—P(BNC)

+P(ANBNC)
5.18. T'wo bounds: P(AVURY & P(A)Y +£(B)
(a) Subadditivity or Boole’s Inequality: If Ay, ..., A, are

events, not necessarily disjoint, then
P(A, LA, LA, ) £ PLA) rrLA)

P(UAZ-) <> P(A). LAy
1=1 1=1

(b) o-subadditivity or countable subadditivity: If A;, A,
. is a sequence of measurable sets, not necessarily disjoint,

then
P <U AZ-) <> P(A)

e This formula is known as the union bound in engineer-
ing.
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PIA) = P(ANR,) + P(ANB,)
*P(Ane,) *P(ANB, )

5.19. If a (finite) collection {Bi, By, ..., B,} is a partition of €,
then

P(A) = anp(A nB)

Similarly, if a (countable) collection {B1, Bs, ...} is a partition
of 2, then

oo

P(A)=> P(ANB)

i=1
5.20. [Connection to [classical probability theory: Consider an

experiment with finite sample space 2 = {wy, wo, ..., w,} in which
each outcome w; is equally likely. Note that n = |Q].

P(foid) p for ol £

hlo"- %P[iwiv =F('E;l)=1 Qr’

=1
twuuﬂ 2 t-u“}

]

1
n

We must have

P ({w}) = % vi.

Now, given any event ﬁnitdﬂ event A, we can apply to get

P =S PUwh =Y o ==

[w”:,;] weA weA n

We can then say that the probability theory we are working on
right now is an extension of the classical probability theory. When
the conditons/assumptions of classical probability theory are met,
then we get back the defining definition of classical classical prob-
ability. The extended part gives us ways to deal with situation
where assumptions of classical probability theory are not satisfied.

22Tn classical probability, the sample space is finite; therefore, any event is also finite.
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